作者单位
摘要
中山大学光电材料与技术国家重点实验室,中山大学材料学院,广东 深圳 518107
极紫外探测器在电子工业、空间探索、基础科学等领域有着无法替代的作用。本文综述了不同类型极紫外探测器的优势及研究进展,包括气体探测器、闪烁体、微通道板以及半导体极紫外探测器,重点介绍了具有优异抗辐照能力的宽禁带半导体极紫外探测器及其潜在的应用优势。最后,本文展望了极紫外探测器在耐辐照功率监测、高分辨极紫外成像和高抑制比极紫外微光探测等方面的应用前景,并指出了其面临的主要挑战。
探测器 极紫外 闪烁体 气体探测器 宽禁带半导体探测器 
中国激光
2024, 51(7): 0701008
Author Affiliations
Abstract
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
The vacuum-ultraviolet (VUV, 10–200 nm) imaging photodetector (PD) based on the wide bandgap semiconductor (WBGS) can realize a more detailed observation of solar storms than the silicon ones. Here, an 8 × 8 VUV PD array based on the semiconductor AlN with an ultra-wide bandgap is presented, exhibiting the shortest cutoff wavelength (203 nm) reported so far. The PD array with a Pt/AlN/SiC/Ti/Au photovoltaic structure shows an excellent selective response to VUV light, an extremely low dark current density of 2.85 × 10–11 A·cm-2@ -2 V, a responsivity of 0.054 A·W-1@ 0 V and an ultra-short rise time of 13 ns. Also, the clear boundaries and an obvious contrast between light and dark of the VUV image displayed in the imaging measurement indicate the good imaging ability of this PD array, which can be used for the imaging application with high signal-to-noise ratio and high response speed. These results provide rich experience for the development of VUV imaging PDs based on WBGSs both in their fabrication and the practical applications in VUV detection.
PhotoniX
2024, 5(1): 5
作者单位
摘要
中国空间技术研究院 北京空间机电研究所,北京 100194
研制了全光纤相干激光测风雷达系统,该激光雷达系统采用光纤激光器同步触发并发射人眼安全的1.5 μm激光信号,通过全光纤环形链路设计、高像质收发镜头与光楔垂直向上可扫描空间圆锥45°范围,采用双通道高可靠数据采集与处理模块实现对中低空三维矢量风场处理与反演。为满足激光雷达在户外高低温环境(?25 ℃~40 ℃)工作的适应性,对激光雷达系统热源模块进行了系统模型仿真,通过设计并研制热控模块和制冷模块,实现高低温环境工作的可行性。通过激光雷达在室内实验与室外风场标定实验,该激光雷达可测量最高风场高度3 km,风速精度优于0.36 m/s,风向精度优于±5°。
相干激光测风雷达 人眼安全 全光纤链路 高低温环境仿真 热源模块 coherent laser windfinding radar human-eye safety all-fiber link high-low temperature environment simulation heat source module 
应用光学
2023, 44(5): 1109
作者单位
摘要
1 兰州大学 核科学与技术学院兰州 730000
2 兰州大学 中子应用技术教育部工程研究中心兰州 730000
3 中国核动力研究设计院成都 610213
中子像转换屏是热中子透射成像技术的关键部件,中子像转换屏的参数严重影响空间分辨率和热中子-光子转化效率两方面的特性。采用Geant4程序模拟热中子透射成像的物理过程及透射光子二维图像,建立了基于LiF(ZnS)和LiF(GOS)像转化屏的热中子透射成像模拟模型和Siemens star像指示器模型,利用线扩散函数(Line Spread Function,LSF)计算空间位置分辨率,获得热中子像转化屏厚度与空间位置分辨率、中子-光子转换效率的关系。基于兰州大学紧凑型D-D中子源的热中子透射成像系统参数,推荐选取LiF(GOS)像转化屏的厚度为40 μm,LiF(ZnS)像转化屏厚度应选取80 μm,热中子透射成像空间分辨率分别可达到45 μm和63 μm,为基于紧凑型D-D中子源的热中子透射成像系统的研发奠定了技术基础。此外,本工作得到的LiF(GOS)、LiF(ZnS)像转化屏优化参数同样适用于其他热中子成像装置,可为热中子透射成像系统的搭建提供了技术参考。
热中子透射成像 像转换屏 空间位置分辨率 光转换效率 Thermal neutron radiograph Image conversion screen Spatial resolution Neutron-photon conversion efficiency 
核技术
2023, 46(11): 110203
作者单位
摘要
西安科技大学机械工程学院,陕西 西安 710054
由于大范围三维激光扫描易受到采集车的多频率振动噪声的干扰,获取的路面三维形貌精度低。传统滤波和图像处理技术存在无法进行分量分析和过程复杂等缺陷。针对此问题,提出一种基于改进的哈里斯鹰优化(AMHHO)算法的变分模态分解(VMD)算法来对路面分量进行分析,精确剥离多频率振动信息。对车载3D激光相机获取的路面点云数据进行降维得到路面纵剖面信号,用所提AMHHO-VMD算法进行分解,对分解得到的本征模态函数(IMF)进行傅里叶变换并结合采集单元振动状态判定多频率振动信息。最后将筛选后的有效分量重构,得到精确的路面三维形貌。实验结果表明:与经验模式分解(EMD)算法和小波包分解算法相比,所提AMHHO-VMD算法能将多频率振动分量从原始路面点云中剥离,获得精确的路面三维形貌。
激光扫描 路面三维形貌 变分模态分解 多频率振动 哈里斯鹰优化算法 
激光与光电子学进展
2023, 60(20): 2028010
作者单位
摘要
1 运城学院 物理与电子工程系,山西 运城 044000
2 河北工程大学 数理科学与工程学院,河北 邯郸 056038
3 联想(北京)信息技术有限公司,北京 100095
4 南开大学现代光学研究所,天津 300350
5 河北工业大学 先进激光技术研究中心,天津 300401
提出了一种基于轨道角动量全息(Orbital Angular Momentum, OAM)和频移的大容量光学信息加密方法。该方法实现了对多个图像信息的并行加密。首先,对多幅原始图像进行采样,采样阵列的采样间隔取决于具有不同拓扑荷数的螺旋相位的空间频率。然后,多个采样图像信息经过随机相位调制、傅里叶变换和频移相位调制后相干叠加构成轨道角动量保留全息图。最后,将不同拓扑荷的螺旋相位分别编码到轨道角动量保留全息图中,得到轨道角动量选择全息图,进行相干叠加后构成最终的单个加密全息图。解密时,轨道角动量复合选择全息图被加载到空间光调制器上,用包含特定拓扑荷数的涡旋光束照射,并经过傅里叶变换获得多个解密信息。该加密系统具有极高的加密灵活性和极大的加密容量,不仅可以在同一拓扑荷下,设计不同的频移因子来并行加密一组多个图像信息,还可以利用不同拓扑荷对多组图像信息进行加密。该方法将涡旋光束的模式设定为一个新的光学密钥,极大地提高了光学加密系统的安全性。此外,该光学加密方法中,待加密图像信息的尺寸不受空间光调制器的像元数量限制,极大地提高了光学实现信息加密的可行性和有效性。仿真实验结果表明该方法具有较高的安全性、抗噪性和抗剪切能力。
光学信息加密 轨道角动量 全息 频移 optical information encryption OAM holography frequency shift 
红外与激光工程
2023, 52(7): 20230313
王楠楠 1,2,3高玉峰 3郑炜 3李慧 3,**林展翼 1,2,*
作者单位
摘要
1 华南理工大学医学院,广东 广州 510006
2 南方医科大学附属广东省人民医院(广东省医学科学院),广东 广州 510080
3 中国科学院深圳先进技术研究院生物医学光学与分子影像研究中心,广东 深圳 518055
衰老是引起主动脉硬化进而引发各种心血管疾病的主要独立风险因素。对主动脉增龄性改变进行定量评估有望为心血管疾病研究提供重要线索。采用二次谐波成像技术,结合三维灰度共生矩阵纹理分析算法,对不同周龄大鼠主动脉血管壁内外表面的胶原纤维进行了定量评估;提取出多种可量化表征主动脉增龄性改变的特征参数,从胶原纤维微结构角度揭示了主动脉增龄性变化规律。上述方法及提取出的特征参数有望为评估血管老化程度提供有力工具和重要参考指标,并进一步应用于与老化相关的心血管疾病的研究。
医用光学 二次谐波成像 三维灰度共生矩阵 主动脉 增龄性改变 胶原纤维 
中国激光
2023, 50(15): 1507102
作者单位
摘要
1 中国民用航空飞行学院航空工程学院,四川 广汉618307
2 中国科学院国家空间科学中心,北京 100190
鸟击作为影响机场安全的主要事故征候,需要准确、稳定的弱小运动目标检测方法用于机场飞鸟检测。应用光场涨落增强低信噪比的飞鸟运动特征信号,再结合局部高斯混合模型对图像增强区域进行前景分割处理,实现宽视场复杂背景下的机场飞鸟目标检测,并完成不同光照条件的机场飞鸟检测实验。实验结果表明:所提算法较传统算法能有效提高机场条件下的远距离、宽视场、低信噪比弱小目标检测率,且具有较好的光学稳定性。
图像处理 低信噪比 光场涨落 局部高斯混合模型 宽视场 弱小运动目标 
激光与光电子学进展
2023, 60(14): 1410002
张伟 1,2郑伟 1,3,*李凌云 2,**黄萍 1,3陈学元 1,3,***
作者单位
摘要
1 中国科学院福建物质结构研究所 中国科学院功能纳米结构设计与组装重点实验室,福建省纳米材料重点实验室,福建 福州 350108
2 福州大学材料科学与工程学院 先进材料技术重点实验室,福建 福州 350108
3 中国福建光电信息科学与技术创新实验室(闽都创新实验室),福建 福州 350108
全无机零维金属卤化物因其独特的光学性能和可溶液法加工的特点,有望成为替代铅卤钙钛矿的新一代发光材料,在固态照明和光电探测等领域发挥重要作用。本文报道了一种Cd2+掺杂的Cs2ZnCl4新型黄光荧光粉。该材料在270 nm紫外光激发下,呈现565 nm的宽带、长寿命(11.4 ms)发光,荧光量子产率达到46.0%。通过变温高分辨光谱测试分析,证明了其发光来源于Cd2+3E→1A1禁戒跃迁,并且在低温下(<170 K)还观测到局域态激子的发光及其到Cd2+的高效能量传递过程。此外,该材料还展现出优异的抗热猝灭性能,150 ℃温度下的发光强度依然保持室温时的90.0%。本工作为Cd2+掺杂金属卤化物的激发态动力学提供了新发现,也为新型高效零维金属卤化物发光材料的设计开发提供了新思路。
金属卤化物 Cs2ZnCl4 镉掺杂 光致发光 激发态动力学 metal halide Cs2ZnCl4 cadmium doping photoluminescence excited-state dynamics 
发光学报
2023, 44(3): 518
李迟件 1,2姚靖 2,3,4高玉峰 2赖溥祥 3,4[ ... ]郑炜 2,*
作者单位
摘要
1 曲阜师范大学网络空间安全学院,山东 济宁 273100
2 中国科学院深圳先进技术研究院生物医学光学与分子影像研究中心,广东 深圳 518055
3 香港理工大学生物医学工程系,香港 999077
4 香港理工大学深圳研究院,广东 深圳 518055
双光子成像技术已被广泛应用于活体肿瘤成像、神经功能成像以及大脑疾病研究等领域,但双光子成像视场较小(视场直径一般在1 mm以内),限制了其进一步应用。虽然通过特殊的光学设计或者自适应光学技术能够有效增大视场,但复杂的光路设计、高昂的器件成本以及繁琐的操作过程限制了这些技术的推广。提出了一种利用深度学习技术替代自适应光学技术扩展双光子成像视场的新思路,在低成本(无须特殊物镜,无须相位补偿装置)、易操作的前提下实现了大视场双光子成像。设计了一种适用于光学显微系统中扩展双光子成像视场的nBRAnet网络框架,为使该网络框架可以更好地利用特征图信息,在该框架中引入残差模块和空间注意力机制,同时去除了数据归一化处理,以增加图像对比度信息。实验结果表明:所提深度学习方法可以有效地代替自适应光学技术,增强扩展视场中的精细结构特征,并恢复扩展视场的成像分辨率和信噪比,使双光子成像视场直径扩展到3.46 mm,峰值信噪比超过27 dB。深度学习方法具有成本低、操作简单、图像增强效果显著等特点,有望为跨区域脑成像或全脑成像提供一种经济实用的方案。
显微 深度学习 自适应光学 大视场 双光子成像 
中国激光
2023, 50(9): 0907107

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!